1989 Wharncliffe Trapper in

Case jackknife


Motivated by a representation for the least squares estimator, we propose a class of weighted jackknife variance estimators for the least squares estimator by deleting any fixed number of observations at a time. They are unbiased for homoscedastic errors and a special case, the delete-one jackknife, is almost unbiased for heteroscedastic errors. The method is extended to cover nonlinear parameters, regression $M$-estimators, nonlinear regression and generalized linear models. Interval estimators can be constructed from the jackknife histogram. Three bootstrap methods are considered. Two are shown to give biased variance estimators and one does not have the bias-robustness property enjoyed by the weighted delete-one jackknife. A general method for resampling residuals is proposed. It gives variance estimators that are bias-robust. Several bias-reducing estimators are proposed. Some simulation results are reported.



Share this article





Related Posts


Colt Throwing Knives
Colt Throwing Knives
Gil Hibben Throwing Knives
Gil Hibben Throwing Knives

Latest Posts
Metal Swords
Metal Swords
The stars of HBO s have launched a trivia…
Pocket Knife lighter
Pocket Knife…
It’s not a matter of if the apocalypse…
Colt 1911 Vietnam Commemorative
Colt 1911 Vietnam…
Honoring an American Legend Whether as…
Colt Defense stock symbol
Colt Defense…
When politics gets heated, Wall Street…
Pakistan Swords
Pakistan Swords
Many online sword sellers bandy the terms…
Search
Featured posts
  • How to open Gerber Multi tools?
  • Colt Throwing Knives
  • Gil Hibben Throwing Knives
  • Gerber Throwing Knives
  • Case Throwing Knives
  • Hibben Throwing Knives
  • Hibben Knives
  • United Cutlery Throwing Knives
  • Throwing Bowie Knives
Copyright © 2025 l www.bndknives.com. All rights reserved.